Magnesium and Diabetic Neuropathy

by Dr. Mark Sircus, Ac., OMD, DM (P)
Director International Medical Veritas Association, Doctor of Oriental and Pastoral Medicine

Summary

If diabetes has no cure… if it’s like a wind that never ends… at least we can slow that wind-down, and even make it stop. Magnesium is necessary for the production, function & transport of insulin.

Studies suggest that magnesium deficiency:

  • may worsen blood glucose control in type 2 diabetes
  • interrupts insulin secretion in the pancreas
  • increases insulin resistance in the body’s tissues.

Introduction

Diabetes is commonly thought to have no cure. It is progressive and often fatal, and while the patient lives, the mass of medical complications it sets off can attack every major organ. Though public health officials acknowledge that their ability to slow the disease is limited, and though doctors fear a huge wave of new cases will overwhelm public health systems, “Public health authorities around the country have all but ignored chronic illnesses like diabetes, focusing instead on communicable diseases, which kill far fewer people,” according to the New York Times. Hospitals around New York City are full of diabetic patients and on any given day, nearly half the patients are there for some trouble precipitated by the disease.[i]

Type two diabetes is being declared an epidemic in New York City.

With one in three children born in the United States expected to become diabetic in their lifetimes, a close look at its surge in New York City offers a disturbing glimpse of where the city, and the rest of the world is headed. Diabetes has swept through families, entire neighborhoods in the Bronx and broad slices of Brooklyn. While the ranks of American diabetics have exploded by an extremely painful 80 percent in the last decade, New York has seen a devastating explosion of 140 percent. New York is not the only place where the disease is exploding. “Half of Texas children born after the year 2000 will develop diabetes,” said Department of State Health Services Commissioner Dr. Eduardo Sanchez.[ii]

Type 2 Diabetes is sweeping so rapidly through America we need not waste time giving children bicycles. Just roll them a wheelchair.
Boston Globe[iii]

This medical review of diabetic neuropathy introduces a much needed medical intervention for the prevention and treatment of diabetes and the many complications that come from it. Though safe effective treatments are desperately needed there is something strange in the medical establishments approach to diabetic care. The New York Times says in this regard, “In the Treatment of Diabetes, Success Often Does Not Pay.” “It’s almost as though the system encourages people to get sick and then people get paid to treat them,” said Dr. Matthew E. Fink, a former president of Beth Israel Medical Center in Manhattan.

The Times bemoans “a medical system so focused on acute illnesses that it is struggling to respond to diabetes, a chronic disease that looms as the largest health crisis facing the city.”[iv] Something is wrong with the way allopathic medicine is dealing with diabetes and that starts with its refusal to look honestly at what is causing the disease. Diabetes gives us a clear picture of how the human race is being caught between a rock and a hard place, a kind of devils anvil of our own corporate making. The human body is failing to deal with massive chemical exposure in the face of hugely increasing deficiencies in basic nutrients like magnesium. Malnutrition is now in full bloom in the first world even among the obese.

Magnesium and Diabetic Neuropathy

Magnesium is necessary for the production, function & transport of insulin.

Magnesium is known to be necessary for nerve conduction; deficiency is known to cause peripheral neuropathy symptoms and studies suggest that a deficiency in magnesium may worsen blood glucose control in type 2 diabetes. Scientists believe that a deficiency of magnesium interrupts insulin secretion in the pancreas and increases insulin resistance in the body’s tissues. Magnesium deficiency played a role in the constriction of arteries and enhanced injury to the cellular tissues lining the blood vessels. Peripheral artery disease, or peripheral vascular disease, refers to diseases of the arteries and veins of the extremities, especially atherosclerosis with narrowing of the arteries.

This opens the door to the development and progression of atherosclerosis and sets the stage for the development of neurological events such as strokes. These same conditions set the stage for the development of peripheral diabetic neuropathy.[i] This entire scenario described here also sets the stage for the development of peripheral neuropathy even when diabetes is not present. A recent analysis showed that people with higher dietary intakes of magnesium (through consumption of whole grains, nuts, and green leafy vegetables) had a decreased risk of type 2 diabetes.[Ii] Magnesium has potentially beneficial effects at several key steps of glucose and insulin metabolism.

In animal studies, dietary magnesium supplementation can prevent fructose-induced insulin resistance and elevations of blood pressure in rats. [iii] The convergence of large drops in cellular magnesium, which offers protective coverage against chemical toxicity, with increasing poisoning of people’s bloodstreams with heavy metals like arsenic, mercury and lead, as well as a literal host of other chemical toxins in the environment, are teaming up to disrupt normal cell physiological. Eating junk food fits into an alarming picture for modern diets of highly processed foods translates into magnesium deficiencies, and processed food are also high in chemical preservatives, pesticides, and food additives that are harmful to health and put further strains on magnesium reserves in the body.

Magnesium deficiency is associated with insulin resistance and increased platelet reactivity.

An abstract from Disorders of Magnesium Metabolism[iv] concludes, “Magnesium depletion is more common than previously thought. It seems to be especially prevalent in patients with diabetes mellitus. It is usually caused by losses from the kidney or gastrointestinal tract. A patient with magnesium depletion may present with neuromuscular symptoms, hypokalemia, hypocalcemia, or cardiovascular complication. Physicians should maintain a high index of suspicion for magnesium depletion in patients at high risk and should implement therapy early.”

A separate Gallup survey (in 1995) of 500 adults with diabetes reported that 83 percent of those with diabetes are consuming insufficient magnesium from food, with many by significant margins.[v]

Diabetic neuropathy and other complications of diabetes are made worse as a result of concurrent magnesium deficiency. Magnesium is known to be deficient in over 68% of the US population, and more so in diabetics who waste magnesium more than others when blood sugars are out of control. Up to 80% of type 2 diabetics have a magnesium deficiency.[vi] Children labeled “pre-diabetic” (now 41 million) are in great need of magnesium, which has been linked to preventing the development of type 2 diabetes.[vii]

In a series of papers, Dr. L. M. Resnick has shown in the test tube that an increase in glucose in the fluid leads to the release and/or displacement of Magnesium from the red blood cells, thus in the body hyperglycemia, high blood sugar, will cause a total body Magnesium deficiency.[viii] A more recent study shows us that “Serum magnesium depletion is present and shows a strong relationship with foot ulcers in subjects with type 2 diabetes and foot ulcers, a relationship not previously reported.” Hypomagnesemia is associated with the development of neuropathy and abnormal platelet activity, both of which are risk factors for the progression of ulcers of the feet.[ix]

Lower serum magnesium levels are associated with more rapid decline of renal function.

Thus we can expect to find that magnesium can be used to prevent and treat both diabetes and the complications that come from it including severe peripheral neuropathy. Dr. S. E. Browne makes a strong case for intravenous magnesium treatment of arterial disease and has used magnesium sulfate in his general practice for over three decades. “Magnesium sulfate (MgSO4) in a 50% solution was injected initially intramuscularly and later intravenously into patients with peripheral vascular disease (including gangrene, claudication, leg ulcers and thrombophlebitis), angina, acute myocardial infarction (AMI), non-haemorrhagic cerebral vascular disease and congestive cardiac failure.

A powerful vasodilator effect with marked flushing was noted after intravenous (IV) injection of 4-12 mmol of magnesium (Mg) and excellent therapeutic results were noted in all forms of arterial disease.”[x] Dr. Herbert Mansmann Jr., Director of the Magnesium Research Lab,[xi] who is a diabetic with congenital magnesium deficiency and severe peripheral neuropathy, shares that he was able to reverse the neuropathy and nerve degeneration with a year of using oral magnesium preparations at very high doses. “For example it took me 6 tabs of each of the following every 4 hours, Maginex, MgOxide, Mag-Tab SR and Magonate to get in positive Mg balance.

I tell people this not to scare them, but to illustrate how much I needed to saturate myself. Most will only need 10% of this amount. I was doing an experiment on myself to see if it helped my diabetic neuropathy. It worked so I did it for one year, and I have had significant nerve regeneration. I could never have been able to do this with MgSO4 baths (Epsom Salt), since I could not get into and out of a bath tub” [xii] “I was saturated at about 3 grams of elemental Mg per day, but went to 20 grams for over a year. I now take 5 grams, and stools are semi-formed, and the surrounding water is clear, 3-4 per day.” “Mg is very safe, since the gut absorption is regulated by serum Mg levels, and then the Mg stays in the gut and results in varying degrees of diarrhea.

Then the dose is too high. Want soft semi-formed stools. Mine, while on high dosages of magnesium were liquid every 2-4 hours for 2 years, the electrolytes every month were normal, but for low potassium, part of my urinary Mg wasting, both,” wrote Mansmann. Dr. Mansmann concludes, “I have had diabetic neuropathy for over 10 years. The most significant symptom is my neuropathic pain of burning feet, called erythromelalgia. With the aid of Mg I can completely suppress the symptom, but if my blood glucose level is acutely elevated, because of a dietary indiscretion, the pain flares in spite of an apparent adequate dose of Mg.

It goes away with extra Mg gluconate (Magonate) in an hour or so in either case. Without the Mg it will last for six plus hours, even though the blood glucose level is normal in about two hours.” “It is my belief that everyone with diabetes should be taking Mg supplementation to the point of one’s Maximum Tolerated Dose, which is until one has soft-semi, formed stools. In addition, anyone with neuropathy, without a known cause, must be adequately evaluated for diabetes and especially those with poorly, slowly, healing foot sores of any kind. Since the use of Mg is safe I see no reason that this should not be “the standard of care”.[xiii]

Conclusion

Prolonged use of Magnesium will prevent chronic complications from diabetes.[xiv]

“The current “party line” on this subject is not universally accepted, but many of us believe the establishment is too conservative and will some day change. While admitting its importance, for some unknown reason they remain reluctant to recommend magnesium supplements. They just do not know how poor the American diet is in Mg and the frequency of magnesium deficiency” says Dr. Mansmann.[xv] Poorly controlled diabetes increases loss of magnesium in urine. It would be prudent for physicians who treat diabetic patients to consider magnesium deficiency as a contributing factor in many diabetic complications and as a main factor in exacerbation of the disease itself. Recent research from many sources suggests that magnesium for the treatment of diabetes should be paramount in physicians’ minds. The most recent example, after only 8 weeks of oral magnesium, thermal hyperalgesia was normalized and plasma magnesium and glucose levels were restored towards normal in rats.[xvi]

Repletion of the deficiency with transdermal magnesium chloride mineral therapy[xvii] is the ideal way of administering magnesium in medically therapeutic doses. Such treatments will, in all likelihood, help avoid or ameliorate such complications as diabetic peripheral neuropathy, arrhythmias, hypertension, and sudden cardiac death and will even improve the course of the diabetic condition in general.[xviii] Once doctors, primary healthcare providers and the public are made aware of the role of magnesium in diabetes there will be no excuse to not increase public magnesium consumption, which can even be added to water supplies[xix] instead of poisonous fluoride[xx] and dangerous statins[xxi],[xxii],[xxiii] which are also known to cause peripheral neuropathy with long term use. During a stroke or heart attack it would be cruel, medically incompetent and life threatening to not use magnesium chloride or magnesium sulfate immediately.

The same kind of treatment that saves lives in dramatic life threatening situations is urgently needed in the treatment of diabetes and diabetic neuropathy. Incredible as it seems, researchers at Washington University School of Medicine in Missouri are currently evaluating BOTOX injections to help treat foot ulcers.[xxiv] Botox injections are a diluted form of botulism that will paralyze the specified muscle area. Botulinum toxin is made by the bacteria Clostridium botulinum. The bacteria themselves (and their spores) are harmless, but the toxin is considered one of the most lethal known poisons, one that has been a principle agent in biological warfare.[xxv] It binds to nerve endings where they join muscles, leading to weakness or paralysis. Recovery from botulism occurs when the nerves grow new endings, which can take months, according to the FDA.[xxvi]

Choosing highly toxic options has no medical merit when there are infinitely safer treatments like magnesium chloride that is so safe that it helps prevent the development of foot ulcers and diabetic neuropathy in the first place. And if Botox injections are not absurd enough “Maggot Therapy” is on the rise again. Maggot therapy was the standard treatment for healing wounds in the 1930s. Maggots are placed in the wounds and used to digest the necrotic tissues that prevent healing. Medicinal maggots produce enzymes that dissolve dead tissue on a wound, disinfect the wound, and stimulate the production of granulation tissue.[xxvib] Maggot therapy is promoted at the point of no return, when all else has failed to heal wounds and infections, before amputation is done. Medically things would rarely progress to this point if magnesium chloride is used in prevention and treatment of such problems. Magnesium chloride has the added advantage over other magnesium forms in that it is antiseptic as well as cytophilactic.

Rapid increase of magnesium stores are necessary in some cases and may be lifesaving for diabetics as they are for other patients in emergency rooms.

Preventative effects of magnesium may go a long way to protecting the children of the future from early onset of both diabetes and the complications that come from it. The safety profile of magnesium chloride is extraordinary compared to today’s pharmaceutical drugs. It is only with severe renal insufficiency that problems have been observed with magnesium treatments. The elderly are at risk of magnesium toxicity only because of possible decreased renal function so caution is necessary.

Special Note: While Dr. Mansmann makes a strong case for high doses of magnesium, it cannot be ignored that GLA has also been recognized for its ability to stop and/or reverse peripheral neuropathy and is endorsed by Dr. Atkins, of the famous Atkins diet, which many diabetics follow. Dr. Atkins says, “Science has established rather conclusively that GLA halts the otherwise inevitable advance of nerve damage caused by diabetes. GLA helps the nerves to heal. As one study of 111 patients showed, people with either form of diabetes, Type I or Type II, can benefit, using a dose as small as 480 mg of GLA per day.[xxvii] Other research suggests that the fatty acid may even prevent the nerve deterioration from starting up.[xxviii] Some kind of abnormality in fatty acid metabolism is very likely involved in the development of diabetic complications and maybe even the development of diabetes itself. People who have the disease seem unable to make GLA from dietary fats and therefore may suffer from an insufficiency of PGE1, (Prostaglandin E1, a beneficial hormone-like compound). Coincidentally enough, this substance can potentiate the work of insulin and exerts insulin like actions of its own. Therefore diabetics need all the PGE1 that GLA can help them make.” Spirulina is very high in both magnesium and GLA.


References

[i] New York Times. January 9, 2006

[ii] www.dailytexanonline.com

[iii] Derrick Z. Jackson, Diabetes and the trash food industry. Boston Globe. January 11, 2006

[iv] NY Times, January 11, 2006

[i]Amighi J, Sabeti S, Schlager O, Mlekusch W, Exner M, Lalouschek W, Ahmadi R, Minar E, Schillinger M. Low serum magnesium predicts neurological events in patients with advanced atherosclerosis. Stroke. 2004 Jan; 35(1): 22-7. Epub 2003 Dec 04. Researchers conducted the study to see if magnesium levels were associated with stroke risk in patients with peripheral artery disease. The study authors followed 323 patients with symptomatic peripheral artery disease and intermittent claudication (www. age was 68 years) for 12 to 25 months. Thirty-five of the subjects (11%) developed neurologic events such as strokes. Subjects who had the lowest magnesium serum levels had triple the risk for stroke and other harmful neurologic events compared to the patients with the highest serum magnesium levels.

[Ii] http://diabetes.niddk.nih.gov/dm/pubs/alternativetherapies/

[iii] Total serum magnesium was reduced in the high-fructose group compared with control or high-fructose plus magnesium-supplemented groups. Blood pressure and fasting insulin levels were also lower in the magnesium-supplemented group. These results suggest that magnesium deficiency and not fructose ingestion per se leads to insulin insensitivity in skeletal muscle and changes in blood pressure. Dietary magnesium prevents fructose-induced insulin insensitivity in rats.Batan et.al; Hypertension. 1994 Jun;23(6 Pt 2):1036-9. www.ncbi.nlm.nih.gov

[iv] Endocrinology & Metabolism Clinics of North America. 24(3):623-41, 1995 Sep.

[v] v57, Better Nutrition for Today’s Living, March ’95, p34.
http://www.mgwater.com/articles.shtml

[vi] Carper, J. Mighty Magnesium. USA Weekend. 2002 Aug 30-Sept 1.

[vii]Magnesium Deficiency Linked to Type 2 Diabetes http://www.newstarget.com/006121.html

Studies conducted at Harvard University indicate that people who have high levels of magnesium in their blood are less likely to develop type 2 diabetes or insulin resistance than those with lower levels. Studies in Mexico have also found an alleviation of diabetes symptoms in patients who took dietary supplements containing magnesium. Original Source: www.health24.com

[viii] Diabetologia” 36(8):767-70, 1993

[ix] Low serum magnesium levels and foot ulcers in subjects with type 2 diabetes. Rodriguez-Moran M, Guerrero-Romero F. Arch Med Res. 2001 Jul-Aug;32(4):300-3. www.ncbi.nlm.nih.gov

[x] S. E. BROWNE. The Case for Intravenous Magnesium Treatment of Arterial Disease in General Practice. Journal of Nutritional Medicine (1994) 4, 169-177

[xi] Herbert C. Mansmann Jr. MD. Honorary Professor of Pediatrics. P.O. Box 791, Rangeley, ME 04970 Associate Professor of Medicine (1968-03) Director of the Magnesium Research. Laboratory (1989-03) Thomas Jefferson University http://www.magnesiumresearchlab.com

[xii]  http://health.groups.yahoo.com/group/MagnesiumResearchLab/message/2863

[xiii] http://magnesiumresearchlab.com/Diabetes-and-Mg-5-11-04.htm

[xiv] The effect of magnesium supplementation in increasing doses on the control of type 2 diabetes. Diabetes Care. 1998 May;21(5):682-6. www.ncbi.nlm.nih.gov

[xv] http://magnesiumresearchlab.com/Diabetes-and-Mg-5-11-04.htm

[xvi] Hasanein P. et al. Oral magnesium administration prevents thermal hyperalgesia induced by diabetes in rats. Department of Biology, Bu-Ali Sina University, Hamadan, Iran. Diabetes Res Clin Pract. 2006 Jan 14

[xvii] See http://www.MagnesiumForLife.com for full information on transdermal magnesium chloride mineral therapy. And go to http://www.globallight.net to see the recommended natural seawater product with the highest concentration and lowest toxicity that the International Medical Veritas Association endorses.

[xviii] Long term magnesium supplementation influences favourably the natural evolution of neuropathy in Mg-depleted type 1 diabetic patients (T1dm); De Leeuw et al; Magnes Res. 2004 Jun; 17(2):109-14 www.ncbi.nlm.nih.gov/

[xix] http://mgwater.com/

[xx] Because fluoride is excreted through the kidney, people with renal insufficiency would have impaired renal clearance of fluoride (Juncos and Donadio 1972). Elderly people are more susceptible to fluoride toxicity.

[xxi] Statins and peripheral neuropathy; U. Jeppesen , D. Gaist , T. Smith S. H. Sindrup European Journal of Clinical Pharmacology Volume 54, Number 11;835 – 838 January 1999

[xxii] The Peripheral Neuropathy Caused by Statins Petition to Pharmaceutical Researchers and Manufacturers of America and companies listed was created by DrugIntel Statin Users with Neuropathy and written by John Lehmann. “We users of statin drugs have experienced some of the symptoms listed below [1] that characterize peripheral neuropathy (damage to nerves outside the brain). Medical research published in peer-reviewed journals has shown that statins are able to cause peripheral neuropathy or a syndrome that is very similar to it. We petition the pharmaceutical manufacturers of statins [2] to:
1. Notify patients (past, current, and prospective users of statins) and healthcare professionals (physicians, pharmacists, nurses, physicians’ assistants) of the risk associated with statin use and what to do once the first signs and symptoms of neuropathy have appeared.
2. Sponsor and perform research on how statins cause neuropathy.
3. Sponsor and perform clinical research on how to cure and reverse the neuropathy caused by statins.
4. Perform clinical research and recommend the best drug treatments to mitigate the pain and make other symptoms of statin-induced neuropathy more tolerable.
5.Proactively offer reparation to statin users who have suffered neuropathy. The petition will be presented to the Pharmaceutical Researchers and Manufactuers Association and to the Medical Affairs Departments of the companies listed, as well as any additional companies that may be identified as relevant over time http://www.petitiononline.com/Statins/petition.html

[xxiii] Statins and risk of polyneuropathy
D Gaist, MD PhD, U Jeppesen, M Andersen, LAG Neurology 2002;58:1333-1337 – 2002 American Academy of Neurology – Statins and risk of polyneuropathy.

[xxiv] Participants receive injections of the toxin in six places in the calf muscle and then the leg is put into a cast. The idea is that this will help prevent pressure on the ball of the foot during walking. The ball if the foot is the area most affected by foot ulcers and allowing an ulcer to heal completely helps prevent recurrence. Link

[xxv] Botulinum toxin has been a concern as a potential biological warfare agent since World War II. In response to concerns about Germany’s botulinum toxin research, the United States and Great Britain developed countermeasures against the toxin before the invasion of Europe. More recently, Iraq has been accused of producing large amounts of botulinum toxin for use as a biological warfare agent. The extreme toxicity of botulinum toxins and the ease of production, transport, and delivery make this an agent of extreme bioterrorism concern. www.niaid.nih.gov

[xxvi] Overview of Botulism: www.cidrap.umn.edu

[i] Maggot Therapy Speeds Healing of Diabetic Foot Ulcers. bastyrcenter.org and www.larve.com/

[xxvii] Keen, H., et al., Diabetes Care, 1993; 16: 8-15.

[xxviii] Jamal, G., Diabetic Medicine, 1994; 11(2): 145-49. http://www.physicalexamnyc.com/the-power-of-gla/

Author: Dr. Mark Sircus, Ac., OMD, DM